PROGRAM EDUCATIONAL OBJECTIVES

PEO 1: Graduates shall have the ability to apply knowledge across the Branches and in emerging areas of CE/ME/EEE/ECE/CSE/IT for higher studies, research, employability and handle the realistic problems.

PEO 2: Graduates shall have good communication skills, to possess ethical conduct, sense of responsibility to serve the society, and protect the environment.

PEO 3: Graduates shall have strong foundation in academic excellence, soft skills, managerial skills, leadership qualities and understand the need for lifelong learning for a successful professional career.

PROGRAM SPECIFIC OBJECTIVES

PSO 1:After completion of the program the graduate will be able to apply fundamental knowledge of Electronics to design Circuits and to develop the Integrated circuits for various applications in the field of Communication, Signal processing and in System automation **PSO 2:**After completion of the program the graduate will be able to develop product by using Electronics Engineering related cutting edge software and hard ware tools

PROGRAMME OUTCOMES:

Engineering Graduates will be able to:

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics natural science, and engineering sciences.
- 3. **Design / development of solutions:** Design solutions for complex engineering problems and design system components or process that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, society and environmental consideration.
- 4. **Conduct Investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethics principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in an team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE OUTCOMES

PROGRAMME: B.TECH	DEGREE: UG	A.Y: 2019-20	SEMESTER: I&II
-------------------	------------	---------------------	----------------

S.N	Year/	Course Name	Course Outcomes
0	Sem	Course Manie	(Student will be able to understand)
			CO1: Write the matrix representation of a set of linear
			equations and to analyse the solution of the system of
			equations
			CO2: Reduce the quadratic form to canonical form using
			orthogonal transformations. Analyse the nature of sequence
1	I-I	Mathematics-I	and series
1	••		CO3: Solve the applications on the mean value theorems.
			Evaluate the improper integrals using Beta and Gamma
			functions.
			CO4: Find the extreme values of functions of two variables
			with/ without constraints
			CO1: The student would be able to learn the fundamental
			concepts on Quantum behaviour of matter in its micro
			state.
			CO2: The knowledge of fundamentals of Semiconductor
			physics, Optoelectronics, Lasers and fibre optics enable the
			students to apply to various systems like communications,
			solar cell, photo cells and so on.
		Applied Dryging	CO3: Design, characterization and study of properties of
2			material help the students to prepare new materials for
2	I-I	Applied Physics	various engineering applications.
			CO4: The course also helps the students to be exposed to
			the phenomena of electromagnetism and also to have
			exposure on magnetic materials and dielectric materials.
			CO1: Demonstrate the basic knowledge of computer
			hardware and software.
			CO2: Ability to write algorithms and draw flow charts for
3	I-II	Programming For Problem Solving	solving problems.
5	1-11		CO3 Ability to code a given logic in C programming
			language.
			CO4: Implementing different searching and sorting
			techniques for problem solving.
Λ	TT	Engineering	
+	Graphic Graphic		
4	I-I	Engineering Graphics	 CO1: Preparing working drawings to communicate t ideas and information. CO2: Read, understand and interpret engineering drawing CO1 The knowledge of atomic, molecular and electron

	I-II	Chemistry	changes, band theory related to conductivity
5		- v	CO2: The required principles and concepts of
			electrochemistry, corrosion and in understanding the
			problem of water and its treatments.
			CO3 The required skills to get clear concepts on basic
			spectroscopy and application to medical and other fields.
			CO4: The knowledge of configurational and
			conformational analysis of molecules and reaction
			mechanisms.
			CO1: Use English Language effectively in spoken and written forms.
			CO2: Comprehend the given texts and respond
6	I-II	English	appropriately.
	4-11	Duguan	CO3: Communicate confidently in various contexts and
			different cultures.
			CO4: Acquire basic proficiency in English including reading and listening comprehension, writing and speaking
			skills.
			CO1: Students will be able to analyze the basic concepts
			like ohms law, KCL, KVL, for different electrical networks
			and apply them to other networks reduction techniques.
			CO2: Students will be able to distinguish between AC and
			DC, demonstrate terminology used in AC Circuits, and able
		_ _ <u>_</u>	to know the advantages and applications of AC Circuits.
7	I-II	Basic Electrical	CO3: Students will be able to explain in detail about
		Engineering	Transformers.
			CO4: Students will be able to distinguish between different
			types of DC/AC machines
			CO5 :Students will be obtaining knowledge of various
			electrical installations.
			CO1 : Identify whether the given differential equation of
			first order is exact or not.
			CO2 : Solve higher differential equation and apply the concept of differential equation to real world problems.
0	тт		CO3 : Evaluate the multiple integrals and apply the concept
8	I-II	Mathematics-II	to find areas, volumes, centre of mass and Gravity for
			cubes, sphere and rectangular parallelepiped
			CO4 : Evaluate the line, surface and volume integrals and converting them from one to another
			converting them from one to another.
			Co1: Student Will Be Able To Understands The Concept
			Of Diode And Its Application
9	II-I	Electronic Devices	CO2: Student Will Be Able To Exposes Towards BJT And
9	11-1	And Circuits	Design Approaches Using Load Line Analysis
			CO3: Student Will Be Able To Understanding Concept Of
			JFET

			CO4: Student Will Be Able To Understands Small Signal BJT Analysis
			Co1: Apply And Assess The Gained Knowledge On Basic Rlc Circuit's Behavior
10	II-I	Network Analysis And Transmission	CO2: Analyze The Steady State And Transient Analysis Of RLC Circuits
10		Lines	CO3: Know The Characteristics Of Two Port Network Parameters.
			CO4: Justify And Analyze The Transmission Line Parameters And Configurations
			Co1: Student Will Understands The Numerical Information In Different Forms And Boolean Algebra Theorems
1.1		Digital System	CO2: Student Will Be Exposed To The Postulates Of Boolean Algebra And To Minimize Combinational
11	II-I	Design	Functions CO3:. Student Will Be Able To Design And Analyze
			Combinational And Sequential Circuits CO4: Student Will Known About The Logic Families And
			Realization Of Logic Gates.
			Co1: Students Will Able To Differentiate Various Signal Functions.
			CO2: Students Will Able To Represent Any Arbitrary
12	II-I	Signals And Systems	Signal In Time And Frequency Domain
		Signals Find Systems	CO3: Students Will Able To Understand The
			Characteristics Of Linear Time Invariant Systems CO4: Students Will Able To Analyze The Signals With
			Different Transform Technique
			Co1: Students Will Able To Have The Basic
	II-I		Understanding Of Random Signals And Processes.
			CO2: Students Will Able To Utilize The Random Signals
10		Probability Theory	And Systems In Communications And Signal Processing
13		And Stochastic	Areas
		Processes	CO3: Students Will Able To Know The Spectral And Temporal Characteristics Of Random Process.
			CO4: Students Will Able To Learn The Basic Concepts Of
			Noise Sources
			Co1 The Scheme Of The Fundamental Duties And Its
14	II- I	Constitution Of India	Legal Status
			CO2: Scheme Of The Fundamental Rights
			Co1: A Student Can Analyze The Complex Functions
	11-11	Laplace	With Reference To Their Analyticity, Integration
		Transforms,	Using Cauchy's Integral Theorem
15		Numerical Methods	
		And Complex	CO2: Student Can Express A Non-Periodic Function
		Variables	As Integral Representation
			CO3: Express Any Periodic Function In Term Of
		1	

			Sines And Cosines
			CO4: Express A Non-Periodic Function As Integral Representation. To Analyze One Dimensional Wave And Heat Equation
16	11-11	Electromagnetic Fields And Waves	 Co1: Students Will Be Able To Distinguish Between The Static And Time-Varying Fields, Establish The Corresponding Sets Of Maxwell's Equations And Boundary Conditions, And Use Them For Solving Engineering Problems CO2: Students Will Be Able To Distinguish Scalar And Magnetic Potentials And Will Be Able To Know The Ampere's Law And Its Applications And Can Study The Magnetic Effect On Other Current Sources CO3: Students Will Be Able To Understand The Inconsistency Of Ampere's Law And How To Overcome This. CO4: Students Will Be Able To Determine The Transmission Line Parameters For Different Lines, Characterize The Distortions And Estimate The Characteristics For Different Lines.
17	II-II	Analog And Digital Communications	 Co1: Students Will Be Able To Analyze And Design Of Various Continuous Wave And Angle Modulation And Demodulation Techniques CO2: Students Will Be Able To Understand The Effect Of Noise Present In Continuous Wave And Angle Modulation Techniques CO3: Students Will Attain The Knowledge About AM , FM Transmitters And Receivers CO4: Students Will Be Able To Analyze And Design The Various Pulse Modulation Techniques Efficiency
18	11-11	Linear Ic Applications	 Co1: A Thorough Understanding Of Operational Amplifiers With Linear Integrated Circuits CO2. A Thorough Understanding Of Operational Amplifiers With Linear Integrated Circuit CO3: Attain The Knowledge Of Functional Diagrams And Applications Of IC 555 And IC 565 CO4: Attain The Knowledge Of Functional Diagrams And Applications Of IC 555 And IC 565 CO5: Acquire The Knowledge About The Data Converters. Understand The Concepts Of Digital Modulation Techniques And Baseband Transmission.
19	II-II	Electronic Circuit	CO1: Learn The Concepts Of High Frequency Analysis Of Transistors

		Analysis	CO2:. To Give Understanding Of Various Types Of
		1 11111 y 515	Amplifier Circuits Such As Small Signal, Cascaded,Large
			Signal And Tuned Amplifiers
			CO3: To Familiarize The Concept Of Feedback In
			Amplifiers So As To Differentiate Between Negative And
			Positive Feedback.
			CO4:. To Construct Various Multivibrators Using
			Transistors And Sweep Circuits.
			Co1: To Develop Students' Sensibility With Regard To
			Issues Of Gender In Contemporary India CO2: To Provide A Critical Perspective On The
		Gender	Socialization Of Men And Women
20	II-II	Sensitization	CO3: To Expose The Students To Debates On The
			Politics And Economics Of Work
			CO4 : To Help Students Reflect Critically On Gender
			Violence.
			CO1: Students will be able to Apply Maxwell's equations
			to stationary and time-harmonic fields.
			CO2: Students will be able to Characterize uniform plane
			waves in free space and different types of media
		F 1	CO3: Students will be able to Solve problems of wave
01		Electromagnetic	reflection and transmission at interfaces and the concepts of
21	III-I	Theory And Transmission Lines	propagation of guided waves, power flow by poynting's
			theorem and applications
			CO4: Students will be able to Competent enough to learn
			subjects like antennas, microwave engineering, radar
			systems and wireless communication and research activities
			can be pursued with knowledge
			CO1: Students will be able to understand the operational
			amplifier with linear integrated circuits
		Linear And Digital Ic Application	CO2: Students will be able to Understand different families
22	III- I		of digital integrated circuits and their characteristics
			CO3: Student will be able to design circuits using
			operational amplifiers of various applications
			CO1: Students will be able to describe the functions of
			various components of digital communication systems
		Digital Communication	CO2: Students will be able to compare different pulse
			digital modulation techniques like PCM, DPCM, DM and
			ADM.
			CO3: Students will be demonstrating the ability to design
			digital communication system for a given specifications
22			CO4: Students will be able to analyze performance of
23			
			baseband and pass band digital communication system in
			terms of error probability and spectral efficiency
			CO5: Students will be demonstrating the ability to describe
			function of error detecting and error correcting codes like
			block codes and convolution codes
			CO6: Students will be able to explain the advantages of

			spread spectrum techniques and performance of spread
			spectrum, PN codes in jamming, noise etc.
			CO1: Student will be able to explain the fundamental
			concepts and principles of instrumentation
			CO2: Student will be able to demonstrate the operations of
			the various instruments required in measurements
			CO3: Student will be able to Apply the measurement
			techniques for different types of tests. To select specific
		Electronic	instrument for specific measurement function.
24	III- I	Measurements And	CO4: Student will be able to explain the principle of
		Instrumentation	operation, working of different electronic instruments like
			digital multi meter, vector voltmeter
			CO5: Student will be able to apply knowledge of different
			oscilloscopes like CRO, DSO
			CO6:Student will be able to functioning, specification, and
			applications of signal analyzing instruments
			CO1: Students will be able to understand management and
			its evolution
		Fundamentals Of Management	CO2: Students will be able to plan and control the HR
			function better
25	TTT T		CO3: Students will be able to plan an organizational
25	III-I		structure for a given context in the organization
			CO4: Students will be able to understand various
			leadership styles
			CO5: Evolving strategies for controlling the business
			organization effectively
		II- II Java Programming	CO1: Students can apply object oriented concept for
	ш. п		writing simple programs.
			CO2: Students can able to apply the exception handling
26			technique for writing user defined exceptions in program.
20	111-11		CO3: Students can able to connect to database from java
			program through JDBC.
			CO4: Students can able to write GUI based program by
			using applet.
			CO1: Students will Able to Understand and design
		Digital System	Embedded Systems. CO2: Students will Able to Understand types of memory
27	III- II	Digital System Design	and interfacing to external world.
21	111-11		CO3: Students will Able to Learn basic OS and RTOS
			CO3: Students will Able to Learn basic OS and KTOS
			design approaches
			CO1: Students able to aware of the parameter
		Antennas And Wave	considerations viz. antenna efficiency, beam efficiency
28	III- II		radiation resistance etc in the design of an antenna.
20	111-11	Propagation	CO2: Students capable to analyze the designed antenna and
			field evaluation under various conditions and formulate the
			new evaluation under various conditions and formulate the

			alastria on wall on the magnetic fieldstiont for T
			electric as well as the magnetic fields equation set for Far
			field and near field conditions.
			CO3: Students able to understand the array system of
			different antennas and field analysis under application of
			different currents to the individual antenna elements.
			CO4: Students able to understand the design issues,
			operation of fundamental antennas like yagi – Uda, Horn
			antennas and helical structure and also their operational
			methodology in practice and knowledge about the means of
			propagation of EM wave.
			CO1: Students will learn the internal organization and
			instruction set of 8086, 8051 microprocessor
			/microcontrollers and will be able to write programs and
			execute them based on instruction set.
29	III- II	Microprocessor And	CO2: Students able to understand various Data transfer
29	111-11	Microcontroller	schemes, interrupt structures of 8086 and 8051.
			CO3: Students able to interface various I/O peripherals
			with 8086 microprocessor, 8051 microcontroller.
			CO4: Students will be able to design a system based on
			microprocessors/microcontrollers.
			CO1: Students will able to implement discrete Fourier
			Transforms (DFT) and Fast Fourier Transform (FFT) to
			analyze the input signal and design a processing system to
			give the desired output in the design of a DSP system
			CO2: Students will able to use FFT algorithms in rapid
			frequency-domain analysis and processing of digital signals
30	III- II		and investigation of digital systems.
		Digital Signal	CO3: Students will able to design IIR filters to meet
		Processing	specific magnitude and phase requirements
			CO4: Students will able to design FIR filters to meet
			specific magnitude and phase requirements
			CO5: Students will able to realize IIR and FIR filters using
			direct forms, cascade and parallel forms
			CO1: Students will be able to Formulate optimization
			problems.
			CO2: Students will able apply unconstrained optimization
			and constrained non-linear programming and dynamic
		Optimization	programming
31	IV-I	-	CO3: Students will able to explain the need of optimization
		Techniques	of engineering systems
			CO4: Students will able to understand optimization of
			electrical and electronics engineering problems
			CO5: Students will able to apply classical optimization
			techniques, linear programming, simplex algorithm,
			transportation problem,
	IV-I	Microwave	CO1: Students will able to Describe the significance of microwaves and transmission lines
			microwaves and transmission lines

32		Engineering	CO2: Students will able to Analyze the characteristics of
			microwave tubes and compare them
			CO3: Students will able to List and explain the various
			microwave solid state devices
			CO4: Students will able to Set up a microwave bench for
			measuring microwave parameters
			CO1: Students will be able to analyze Data
			communications System and its components
			CO2: Students will be able to Identify the different types
			of network topologies and protocols
33	IV-I	Computer Networks	CO3: Students will be able to Enumerate the layers of the
			OSI model and TCP/IPL Explain the function(s) of each
			layer
			CO4: Students will be able to build the skills of sub netting
			and routing Mechanisms
			CO1: Student will be able to Acquire qualitative knowledge
			about the fabrication process of integrated circuit using
			MOS transistors.
		Vlsi Design	CO2: Student will be able to Choose an appropriate inverter depending on specifications required for a girauit
34	IV-I		depending on specifications required for a circuit CO3: Student will be able to Draw the layout of any logic
54	1 / -1		circuit which helps to understand and estimate parasitic of
			any logic circuit
			CO4: Student will Design different types of logic gates
			using CMOS inverter and analyze their transfer
			characteristics
			CO1: Students will be Able to Understand and design
		Embedded Systems Design	Embedded Systems
			CO2: Students will be Able to Understand types of memory
35	IV-I		and interfacing to external world
			CO3: Students will be Able to Learn basic OS and RTOS
			CO4: Students will be Able to Understand embedded
			firmware design approaches
			CO1: Student will have an overview w, Satellite
		I Global Positioning System	Navigation, Time and GPS, User position and velocity
36	IV-II		calculations
			CO2: Student will be able to use GPS in surveying.
			CO3: Student will be able to design satellite links
		IV-II Optical Communications	CO1: Student will be able Understand and analyze the
	IX 7 II		constructional parameters of optical fibres.
27			CO2: Students will be able to design an optical system.
37	1 V -11		CO3: Students will be able to Estimate the losses due to
			attenuation, absorption, scattering and bending.
			CO4: Students will be able to Compare various optical detectors and choose suitable one for different applications.
<u> </u>			ucicitors and choose suitable one for unreferit applications.